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The linear stability of the incompressible axisymmetric flow in a buoyant-
thermocapillary liquid pool is considered which is heated from above by a heat
flux with a parabolic radial profile. Buoyancy forces and radial thermocapillary
stresses due to the inhomogeneous surface temperature distribution drive a toroidal
vortex. In the absence of buoyancy and for low Prandtl numbers the basic flow
becomes unstable typically by a stationary centrifugal instability. At moderate Prandtl
numbers the rotational symmetry is broken by hydrothermal waves. In the limit of
vanishing Prandtl number two other critical modes are found if the pool is very
shallow. One mode is a centrifugally destabilized rotating wave with high azimuthal
wavenumber. The other mode is steady and it is driven by the deceleration of
the radial inward return flow as it approaches the axis. The deceleration results
from an entrainment of fluid into the thin layer of rapid radial outward surface
flow. The centrifugal instability of the toroidal vortex flow is assisted by buoyancy
in the low-Prandtl-number limit, because the cooling from the sidewall augments
the thermocapillary driving. For moderately high Prandtl numbers a stable thermal
stratification suppresses the hydrothermal-wave instabilities.

1. Introduction
Flow in non-isothermal liquid pools involving liquid–gas interfaces arises in a

number of technical applications. Among these are crystal growth from the melt
(Kuhlmann 1999), fusion welding (DebRoy & David 1995), electron-beam evaporation
(Karcher et al. 2000) and casting, to name only a few. Many of these processes, fusion
welding in particular, are very complex due to dynamic liquid–solid and liquid–
gas interfaces, multi-component melts, surface active agents, vaporization and other
specific complications such as the motion of the workpiece relative to the incident
laser beam in continuous fusion welding. To better understand the physical processes
of key importance for these applications model systems have been devised to study
the fundamental fluid flow, unperturbed by additional complicating effects.

When the fluid motion is driven at or near the free surface by a localized heat source
a cylindrical domain is the natural geometry. In pure liquids the radial variation of
the surface temperature drives a significant fluid motion via the thermocapillary
effect (Scriven & Sternling 1960). The flow will be axisymmetric for weak driving,
but it can undergo bifurcations to three-dimensional flow for stronger driving forces,
and even become turbulent (Karcher et al. 2000). The situation is different from the
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classical Marangoni instability (Pearson 1958) of a quiescent liquid layer due to a
homogeneous heat flux at the free surface.

Thermocapillary flows in cylindrical geometry have been studied for open-top
cylindrical pools and annular configurations. Kamotani & Ostrach (1994) computed
the axisymmetric flow due to laser-spot heating in an upright circular cylindrical
container for plane and curved free-surface shapes. To eliminate buoyancy forces
Kamotani, Ostrach & Masud (1999) carried out experiments under microgravity
conditions onboard of the space shuttle. A cylindrical pool with a flat free surface
was heated coaxially by a CO2 laser beam with nearly Gaussian profile. The resulting
axisymmetric thermocapillary flow in silicone oil (Pr =33) became unstable to a
three-dimensional time-dependent flow in form of an azimuthally standing wave
with circumferential period of two. Motivated by these experiments Sim & Zebib
(2002) computed the three-dimensional flow in a cylindrical container driven by
thermocapillary forces due to an axisymmetric heat flux with a top-hat profile for
Pr = 30 and 97. They took into account the static deformation of the liquid–gas
interface which results from a given volume of liquid assuming a fixed contact
line. Azimuthally standing and travelling waves were found above a critical heat
flux depending on the free surface being either flat or concave. Their results for
fixed interface shapes were in qualitative agreement with the experimental findings
of Kamotani et al. (1999). Hence, a dynamic deformability of the interface is not
required for the observed three-dimensional flow instabilities.

In electron-beam evaporation the thermocapillary flow is usually much stronger
than in laser heating. Karcher et al. (2000) carried out experiments using a shallow
cylindrical container (aspect ratio Γ ≈ 4) filled with iron and heated in the centre by
an electron beam of up to 50 kW. For Marangoni numbers ranging from Ma = 2 × 107

to 108 turbulent convection was found. In addition, the two-dimensional turbulent
thermocapillary convection in a box was computed for Pr = 0.01 and Marangoni
numbers Ma = O(105). Both experiment and simulation yielded Nusselt numbers
which approximately scaled like Nu ∼ Ma1/3. This scaling has been predicted by
Pumir & Blumenfeld (1996) for turbulent thermocapillary flow in a half space driven
by a point source of heat at the free surface. The exponent of 0.27 rather 1/3 obtained
from the numerics was traced back by Karcher et al. (2000) to the two-dimensional
rather than three-dimensional simulation. Boeck & Karcher (2003) considered a model
in which a liquid with Pr =0.1 in a rectangular volume with aspect ratio Γ = 2 and
square cross-section was heated by a central beam with an axisymmetric Gaussian
profile. For sufficiently high Marangoni number they found flow oscillations in form
of a standing wave. Moreover, they were able to confirm the laminar scaling ∼ Ma1/2

of the velocity magnitude and ∼ Ma−1/4 of the temperature field as predicted by
Pumir & Blumenfeld (1996) for laminar flow.

The thermocapillary flow in an annular cylindrical gap where the inner and outer
cylinders were are at different temperatures has some similarities with the flow in
cylindrical pools. While numerous studies have been carried out for a heating from
the outer cylindrical wall (see e.g. Jing et al. 1999; Hintz, Schwabe & Wilke 2001)
aiming at modelling certain aspects of the Czochralski process of crystal growth from
the melt (Hurle 1994), only a few investigations are available for heating from the
inner cylinder.

For terrestrial and for zero-gravity conditions Kamotani, Lee & Ostrach (1992)
and Kamotani, Ostrach & Masud (2000) carried out experiments on the flow in
an annular system heated from the inner cylinder which had a very small radius
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compared to the outer one. For the high-Prandtl-number fluids employed and for
different free-surface shapes they found the onset of three-dimensional flow in form
of travelling waves with azimuthal period two for both gravity conditions. The free-
surface temperature fields were similar to those of the waves observed in the laser-
heated pool (Kamotani et al. 1999). The annular-gap experiment of Schwabe, Zebib
& Sim (2003) carried out under conditions of weightlessness had a radius ratio of
two. For relatively shallow liquid layers, realized by a movable bottom, with Pr = 6.84
they found an axisymmetric flow consisting of a concentric multi-roll structure similar
as predicted for rectangular geometries by Villers & Platten (1992). For larger
temperature differences Schwabe et al. (2003) found azimuthally standing waves
which were traced back to the hydrothermal waves in infinite layers (Smith & Davis
1983). In a subsequent paper Sim, Zebib & Schwabe (2003) carried out corresponding
simulations and established a qualitative agreement with the experiments of Schwabe
et al. (2003). Heat loss from the free surface was invoked to explain the remaining
differences. To study the effect of the free-surface shape Sim, Kim & Zebib (2004)
computed the two-dimensional thermocapillary convection in an open cylindrical
annulus heated from the inner wall. For Pr = 30 they confirmed earlier results of Sim
& Zebib (2002) and established that dynamic free-surface deformations do not lead
to oscillatory two-dimensional flow for the parameters considered, just as for the pool
geometry.

To date, little is known about the instabilities in thermocapillary liquid pools
where the motion is driven by a central hot spot and the dependence of the critical
conditions on the governing parameters. The present paper is aimed at the linear
stability of the steady axisymmetric flow in open cylindrical pools and the dependence
of the critical Reynolds number, frequency and wavenumber on the geometry, Prandtl
number and strength of buoyancy. To that end we define a model with a minimum
of parameters in § 2. There we also present the methods of investigation and the
solution strategy. Section 3 deals with the verification and grid convergence of
the numerical methods employed. Results are presented in § 4. We consider in
detail the dependence of the basic flow and its linear stability on the Prandtl
number, aspect ratio and buoyancy level. Particular attention is paid to the physical
mechanisms by which the basic flow is destabilized. The results are summarized in
§ 5 and discussed in comparison with experiments for solutocapillary flow in shallow
dishes.

2. Statement of the problem
2.1. Governing equations

We consider an incompressible Newtonian liquid of density ρ and kinematic viscosity
ν occupying an upright circular cylinder of height d and radius R. The aspect ratio
is Γ =R/d . The liquid volume is bounded laterally and from below by solid walls
of constant temperature. The top boundary is a free liquid–gas interface which is
exposed to a vertical heat flux (figure 1). Such a heat flux could be due to, e.g.
laser irradiation the energy being absorbed within a very thin surface layer. The
imposed heat flux induces temperature variations in the liquid volume and at the free
surface giving rise to buoyant and thermocapillary forces, respectively, which drive a
fluid flow. Employing cylindrical coordinates (r, ϕ, z) the non-dimensional Boussinesq
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Figure 1. Geometry and coordinate system.

approximation of the Navier–Stokes equations reads(
∂

∂t
+ U · ∇

)
U = −∇P + ∇2U + GrT ez, (2.1a)

Pr

(
∂

∂t
+ U · ∇

)
T = ∇2T , (2.1b)

∇ · U = 0, (2.1c)

where U = (U, V, W )T, P and T denote the velocity vector, pressure and temperature
fields, Gr is the Grashof number, Pr the Prandtl number and ez the axial unit vector.
The acceleration of gravity g is acting in the negative z direction. In (2.1) we have
used the length, velocity, time, pressure and temperature scales d , ν/d , d2/ν, ρν2/d2

and �T , respectively, the latter of which still needs to be defined.
At the bottom and the mantle of the cylinder we assume no-slip, no-penetration

and constant-temperature boundary conditions

U(r, ϕ, z = −1/2) = U(r = Γ, ϕ, z) = 0, (2.2a)

T (r, ϕ, z = −1/2) = T (r = Γ, ϕ, z) = 0, (2.2b)

where the temperature is measured relative to the wall temperature.
We consider the limit in which capillary forces dominate normal stresses at the free

surface (see e.g. Sen & Davis 1982). In thermocapillary flows the relative importance
of both forces is given by the Capillary number Ca = γ�T/σ , where γ�T is the
magnitude of the temperature-induced surface-tension variations with γ being the
negative surface-tension coefficient. In the asymptotic limit Ca → 0 static and dynamic
deformations of the free surface are absent and the top free surface remains flat. This
limit is a good approximation for a number of thermocapillary flows at criticality in
which Ca ≈ 10−3 . . . 10−1 (see e.g. table 2 of Kuhlmann & Nienhüser 2002).

To minimize the governing parameters we consider an axisymmetric heat-flux-
density distribution at z = 1/2 with a parabolic profile Q(r) which vanishes at the rim
r = Γ . Given Qmax = Q(r = 0) we define the temperature scale �T = Qmaxd/k, where
k is the thermal conductivity of the liquid. With this scaling the thermal boundary
condition on the free surface at z =1/2 becomes

∂T

∂z
= Q(r) = −

(
1 − r

Γ

)2

. (2.3)
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Neglecting viscous stresses in the ambient gas the stress balance at the flat non-
deformable liquid–gas interface requires (see e.g. Kuhlmann 1999)

S · ez + Re (I − ezez) · ∇T = 0, (2.4)

where S = ∇U+(∇U)T is the viscous stress tensor in the liquid phase and I the identity
matrix. The strength of the thermocapillary effect is determined by the thermocapillary
Reynolds number Re which, together with the remaining governing parameters, is
defined as

Re =
γ�T d

ρν2
=

γQmaxd2

ρν2k
, Gr =

β�Tgd3

ν2
, P r =

ν

κ
, (2.5)

where κ is the thermal diffusivity and β the thermal expansion coefficient at constant
pressure.

A useful integral quantity characterizing the flow is the Nusselt number

Nu =
Q0

Qcond (T )
=

T 0

T
, (2.6)

where Q0 is the total heat flux through the free surface, T the mean surface
temperature for a given convective flow state and Qcond (T ) the conductive heat
flux that would be required to obtain the same mean surface temperature T . Owing
to the linearity of the heat conduction equation Nu can be expressed through the
mean surface temperature T 0 of the conductive state under the heat flux Q0.

2.2. The basic flow and its linear stability

The symmetries of the problem allow a steady axisymmetric basic flow (u0, p0, θ0)
T

for which ∂t = ∂ϕ = v0 ≡ 0. The basic state must satisfy the boundary conditions

∂u0

∂z
= −Re

∂θ0

∂r
and

∂θ0

∂z
= −

(
1 − r

Γ

)2

(2.7)

on the free surface and (u0, w0, θ0) = (0, 0, 0) on the rigid walls.
The stability of the basic state is investigated by a linear-stability analysis. To that

end we decompose the full three-dimensional flow into

(U, P , T )T = (u0, p0, θ0)
T + (u, p, θ)T. (2.8)

Substitution into (2.1) and linearization with respect to the perturbation quantities
(u, p, θ)T yields

∂u

∂t
+ u · ∇u0 + u0 · ∇u = −∇p + ∇2u + Grθez, (2.9a)

∂θ

∂t
+ u · ∇θ0 + u0 · ∇θ = Pr−1∇2θ, (2.9b)

∇ · u = 0. (2.9c)

The perturbations must vanish on the rigid walls (u, θ) = (0, 0). At the free surface
we require adiabatic conditions for the perturbations, i.e. ∂θ/∂z = 0 on z = 1/2, and
the velocity perturbations must satisfy the thermocapillary stress conditions

∂u

∂z
= −Re

∂θ

∂r
and

∂v

∂z
= −Re

r

∂θ

∂ϕ
. (2.10)
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The solution of (2.9) is a superposition of normal modes⎛
⎝ u

p

θ

⎞
⎠ (r, ϕ, z, t) =

⎛
⎝ û

p̂

θ̂

⎞
⎠ (r, z) eλteimϕ + c.c., (2.11)

where m is an integer azimuthal wavenumber and λ= σ + iω with growth rate σ and
oscillation frequency ω. Using the ansatz (2.11) the discretization of (2.9) leads to the
generalized eigenvalue problem

A · xk = λkB · xk, (2.12)

with K eigenvectors xk and eigenvalues λk , where K is the size of the system. A and B
are the matrix representations of the differential operators and boundary conditions.
Note that the boundary conditions on the axis r = 0 for the amplitudes (û, p̂, θ̂)
depend on the wavenumber m (see e.g. Xu & Davis 1984).

2.3. Energy budget of linear perturbations

For a physical understanding of the dynamics of the linear perturbations we consider
the transfer rates of kinetic and thermal energy between the basic state (u0, p0, θ0)

T

and the normal modes (u, p, θ)T. The rate of change of kinetic energy Ėkin of the
perturbation is governed by the Reynolds–Orr equation. On the margin of stability
Ėkin =0. Hence, the Reynolds–Orr equation normalized by the viscous dissipation
reads

1

D

dEkin

dt
=

1

D

d

dt

∫
V

u2

2
dV = −1 + Iv + M + IGr = 0, (2.13)

where

D =

∫
V

(∇ × u)2 dV (2.14)

is the rate of viscous dissipation and

Iv = − 1

D

∫
V

u · [(u · ∇)u0] dV (2.15)

represents the normalized energy production by advection of basic-state momentum
u0 by the perturbation flow u. The quantities

Mr =
1

D

∫
S

u∂zu dS, Mϕ =
1

D

∫
S

v∂zv dS and IGr =
Gr

D

∫
V

wθ dV (2.16)

represent the normalized work done by Marangoni forces acting on the free surface
S in radial and azimuthal direction, M = Mr + Mϕ , and the work done by buoyancy
forces, respectively.

In a similar way a thermal energy Eth can be defined. For neutral stability it satisfies

1

DT

dEth

dt
=

1

DT

d

dt

∫
V

θ2

2
dV = −1 + IT = 0. (2.17)

Here

DT =
1

Pr

∫
V

(∇θ)2 dV and IT = − 1

DT

∫
V

θ(u · ∇)θ0 dV (2.18)

are the rate of heat diffusion and the normalized thermal energy production,
respectively. It should be noted that a term H =D−1

T Pr−1
∫

S
θ(∂θ/∂z) dS arises in the

thermal energy budget representing the rate of change of thermal energy by a heat flux
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Figure 2. Neutral Reynolds numbers Ren (full lines, circles) for Γ = 1, Gr = 0, m= 3 and
Pr = 0.0316 (a) and Pr = 3.98 (b) as functions of the grid resolution, where N = Nr = Nz. The
neutral frequency ωn for Pr = 3.98 is shown as dashed line and squares in (b).

through the free surface. It vanishes, however, for perturbations subject to the present
adiabatic boundary conditions at the free surface S. Note that the advection with the
basic flow of momentum and heat u[(u0 · ∇)u]/D and θ[(u0 · ∇)θ]/DT , respectively, are
non-zero locally, but energy preserving in the integral sense.

While (2.13) and (2.17) describe the total energy budgets, the local rates of change
of energy, i.e. the densities of the rates of change of energy, are given by the
respective integrands. They will be denoted, henceforth, by lower case letters, e.g.
iv = −u · [(u · ∇)u0]/D.

3. Numerical solution and code verification
The basic state is computed from the two-dimensional version of (2.1) subject to

boundary conditions (2.7) using primitive variables and finite volumes on a staggered
grid. The resulting system of difference equations is solved by Newton–Raphson
iteration employing an efficient linear systems solver from the mathematical subroutine
library LAPACK.

The perturbation equations (2.9) are discretized on the same grid. Once the basic
state is obtained, the generalized eigenvalue problem (2.12) is solved using inverse
power iteration with shift (Golub & van Loan, 1989). Neutral stability boundaries are
characterized by a vanishing growth rate σk = σ (Re, P r, Gr, Γ, m, k) = 0. To find the
neutral-stability hypersurfaces Re = Ren(Pr, Gr, Γ, m, k) the roots of σ are searched
for by means of the secant method. Typically, Re is varied and the basic-state
calculation as well as the eigensystem solution are carried out repeatedly. The critical
Reynolds number Rec(Pr, Gr, Γ ): = minm,k Ren(Pr, Gr, Γ, m, k) is finally obtained as
the minimum envelope of the neutral Reynolds numbers.

All calculations have been carried out using with a resolution of Nr × Nz grid
points. In order to resolve the developing boundary layers the grid is compressed
towards the free surface and the sidewall with stretching factors δr = δz =0.98.

Since no validation data are available for the present problem, we adapted the
boundary conditions to suit the half-zone problem of thermocapillary flow in an
adiabatic cylindrical liquid bridge (Kuhlmann 1999). Good to excellent agreement is
obtained for the basic-state and the critical data. In addition to this verification of
the discretization of the bulk equations, we carried out grid-convergence studies for
the open-pool problem. The results for two representative cases are shown in figure 2.
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Figure 3. Radial velocity u0 of the basic flow at the free surface for Pr = 0.0316 (a) under
critical conditions and Pr = 3.98 (b) for neutral conditions. In both cases Γ = 1 and Gr = 0.
Full and dashed lines indicate resolutions Nr × Nz = 120 × 120 and 60 × 60, respectively, on a
stretched grid.

It can be seen that grid convergence is obtained. The extrapolated values and the
convergence order p were calculated by Richardson extrapolation using three grids
with resolutions 90 × 90, 120 × 120 and 160 × 160.

Owing to the large number of computations to be performed for parametric
studies we used a resolution of 70 × 70 in all subsequent calculations for reasons of
computational economy. This resolution leads to a relative error for Ren of about
2 % or better in most case. Only for very large aspect ratios the error may increase
up to 5 %. The same accuracy holds for the integral energy budget, e.g. |δEkin | � 5 %
or better, where δEkin denotes the error in the normalized Reynolds–Orr equation
(2.13).

It should be noted that the current temperature scale �T = Qmaxd/k results in
relatively high thermocapillary Reynolds numbers, because the associated velocity
scale γQmaxd/(ρνk) under estimates the magnitude of the velocity field in the liquid.
From the radial velocity distributions of the basic flow under critical conditions
(m =3) shown in figure 3(a) for Pr = 0.0316 we find the maximum surface velocity
u∗

0 = 455.4 at r∗ = 0.841 (Nr × Nz =120 × 120). This yields a critical Reynolds number
based on u∗

0 of Re∗
c = 455.4 and a corresponding Marangoni number of Ma∗

c =14.4.
For Pr = 3.98 the mode m =3 (figure 3b) is only neutral. We obtain u∗

0 = 120.1
at r∗ = 0.655 resulting in Re∗

n = 120.1 and Ma∗
n = 478.0. Here, we have ignored the

narrow velocity peak close to the cold wall for Pr = 3.98. These velocity-based critical
Reynolds numbers are of the same order of magnitude as for related surface-force-
driven systems (Schimmel, Albensoeder & Kuhlmann 2005). The maximum of the
basic-state temperature difference along the free surface cannot be used as a control
parameter here, because it is part of the solution and can only be obtained a posteriori.

4. Results and discussion
The parameter dependence of the basic flow, its instability and the physical

mechanisms cannot be covered completely. Therefore, we present calculation along
certain cuts through the parameter space made of Re, Pr , Γ and Gr . To study the
Prandtl number dependence of the critical Reynolds number we consider a unit aspect
ratio and zero gravity. Thereafter, the dependence of Rec on the aspect ratio will
be investigated for three different Prandtl numbers and Gr =0. Finally, the effect of
buoyancy is considered for unit aspect ratio and two representative Prandtl numbers.
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Figure 4. Stream function ψ0 (right side) and isotherms θ0 (left side) of the basic state
in the (r, z) plane for (a) Pr =0.03 at Rec = 3.88 × 104 (Nu = 0.963) and for (b) Pr = 4 at
Rec = 1.10 × 105 (Nu = 4.86), both for Γ = 1 and Gr = 0. The flow is clockwise.

4.1. Prandtl number dependence of the instability

For Γ = 1 and Gr = 0 we find two types of instabilities, depending on the Prandtl
number being either small (Pr � 1) or large (Pr � 1).

4.1.1. Basic flow

The parabolic heat-flux profile on the free surface creates a non-uniform surface-
temperature distribution which drives a surface flow away from the central hot region
to the periphery via the thermocapillary effect. Due to continuity a return flow arises
in the bulk, thus creating a toroidal vortex.

Streamlines and isotherms of the basic state for Pr = 0.03 are shown in figure 4(a)
for critical conditions (Rec = 3.88 × 104). The basic vortex is attached to the free
surface where the flow is driven and it is displaced towards the cold wall due to
inertia effects. The flow in the lower half of the pool is separated forming a large
weak secondary vortex. The basic temperature field is almost conducting at this low
value of the Marangoni number Ma∗ =O(10) (see § 3). The Nusselt number is slightly
less than unity, since the radial outward flow increases the mean surface temperature
T as compared to the mean conductive surface temperature T 0 (2.6).

Representative of moderate Prandtl numbers we consider Pr = 4. The basic state
at criticality is shown in figure 4(b). The critical Reynolds number Rec = 1.10 × 105 is
about three times larger than for Pr =0.03. The toroidal vortex does not differ much
from the one at Pr = 0.03, but it extends deeper into the pool and flow separation
arises only close to the corner made by the bottom and the side wall. Owing to the
increased convective transport the isotherms are significantly compressed towards the
free surface and towards the sidewall next to the cold corner. The central part of
the free surface is significantly cooled by the strong convection which transports cold
fluid vertically upwards the free surface. As a result the mean surface temperature is
reduced and the Nusselt number Nu = 4.86 is large.

4.1.2. Stability boundaries

Neutral stability boundaries for Γ =1 and Gr =0 have been computed for wave
numbers m =1–7. Out of these the most dangerous ones are m =2, 3 and 4.
The corresponding neutral curves are shown in figure 5(a). Two ranges can be
distinguished. For low Prandtl numbers (Pr � 1) the basic flow is unstable to a
stationary mode with wavenumber m =2 or 3, depending on the Prandtl number.
Calculations for Pr = 10−10 (cf. § 4.2.1) confirmed that the asymptotic range for Pr → 0
is reached for Pr � 0.01.
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Figure 5. Neutral Reynolds numbers (a) (logarithmic scale) and neutral frequencies (b) (linear
scale) for Γ =1 and Gr =0. The wave numbers are m= 2 (full line, �), m= 3 (dashed line, �)
and m= 4 (dotted line, +).

Figure 6. Critical flow (arrows) and temperature field (isolines) on the free surface z = 0.5 for
Γ = 1, Pr = 0.03, m= 3 and Rec = 3.88 × 104. Negative temperatures are indicated by dotted
lines.

For moderate Prandtl numbers (Pr � 1) a Hopf bifurcation occurs to an oscillatory
flow with wavenumber m = 2 or 3 depending on Pr . The neutral frequencies ωn are
displayed in figure 5(b). The neutral Reynolds numbers for Pr � 1 are O(105).

4.1.3. Low-Prandtl-number instability mechanism

The stationary instability for Pr = 0.03 occurs at Rec = 3.88 × 104 with wavenumber
m =3. Figure 6 shows the critical mode at the free surface z = 0.5. The temperature
perturbations are very weak for this low Prandtl number. The critical mode exhibits
a ring of weak surface-temperature extrema near the axis and a second somewhat
stronger ring of extrema near the rim of the pool. The radial surface flow between the
inner and the outer extrema is consistent with the thermocapillary effect, i.e. the radial
perturbation flow and the surface forces caused by the perturbation-temperature field
are essentially parallel (γ > 0). The azimuthal perturbation flow between adjacent
outer and stronger temperature extrema, however, is oriented antiparallel to the
azimuthal thermocapillary stress. Hence, the azimuthal motion cannot be created by
the thermocapillary effect. In the absence of buoyancy forces such a perturbation flow
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Pr Γ Rec m Nu Iv I−
v I+

v M δEkin

0.03 1 3.88 × 104 3 0.96 1.013 0.714 0.299 −0.002 0.011
4 1 1.10 × 105 2 4.86 0.065 0.068 −0.003 0.982 0.047
10−10 2 3.34 × 104 7 1.00 1.023 0.721 0.302 0.000 0.023
10−10 4.5 1.28 × 105 4 1.00 1.030 0.654 0.376 0.000 0.030

Table 1. Kinetic energy budget of the critical mode according to (2.13) for selected cases
(Gr =0).

Figure 7. Vertical cross-section for Γ = 1, Gr = 0, Pr = 0.03, m= 3 and Rec = 3.88 × 104

showing the critical mode (vectors) at an azimuthal angle for which the total local production
iv takes its maximum. Also shown are basic-state streamlines (a) and isolines of iv (b). Regions
within which Φ(r) < 0 are grey-shaded.

should be driven by inertial effects. This hypothesis is supported by the kinetic energy
balance (table 1) which shows that the kinetic energy production Iv is the dominating
destabilizing process. The integral contribution M of the Marangoni stresses for
Pr = 0.03 is vanishingly small compared Iv and it even acts stabilizing.

For the inertial instability of the axisymmetric toroidal thermocapillary vortex flow
in low-Prandtl-number liquid bridges Nienhüser & Kuhlmann (2002) have shown
that vortex straining as well as centrifugal effects destabilize the basic flow (for
the lid-driven cavity, see Albensoeder, Kuhlmann & Rath 2001). We argue that the
centrifugal mechanism is dominating for the present low-Prandtl-number instability
for Γ = 1. To that end we refer to the generalized Rayleigh criterion of Bayly (1988)
which ascertains that the flow of an inviscid fluid is centrifugally unstable if a closed
convex streamline exists all along which the magnitude of the circulation decreases
outwards. According to the formulation by Sipp & Jacquin (2000) a two-dimensional
inviscid flow is centrifugally unstable if

Φ(r) :=
|u0|Ω0

R < 0 (4.1)

all along a closed convex streamline. Here Ω0 is the vorticity of the basic flow and
R the local radius of curvature of the streamline. Even though the criterion is valid
for inviscid flows only, we have evaluated (4.1) for the present viscous basic flow. The
result is shown in figure 7.

The criterion (4.1) holds true in the grey-shaded areas. Most notably, the regions
which would favour a centrifugal instability in an inviscid flow are aligned with the
outer streamlines of the basic toroidal vortex (figure 7a). The region extends from the
cold corner where the accelerated free-surface flow is deflected downwards and along
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(a) (b)

Figure 8. Critical flow (arrows) and temperature field (colour) at Rec = 1.10 × 105 with m= 2
and ωc =54.54 for Pr = 4, Γ = 1 and Gr = 0. Shown is (a) the free surface at z = 0.5 and
(b) the midplane at z = 0. The local thermal energy production iT is shown by isolines in
(b). The straight solid line indicates the azimuthal angle of the two internal temperature
maxima (the corresponding vertical cut is shown in figure 9a). The straight dashed line
indicates the azimuthal angle of the thermal production extrema (cf. figure 9b). The critical
mode rotates clockwise.

the sidewall until it separates and turns radially inwards at about mid-height of the
pool. The local production rate of kinetic energy iv has a strong peak well within the
region in which (4.1) is satisfied (figure 7b). If the local kinetic energy production iv
is decomposed into iv = i−

v + i+
v , where i−

v and i+
v represent the local production in the

region where (4.1) holds and where (4.1) is not satisfied, respectively, I−
v and I+

v being
the corresponding integral rates (Shiratori, Kuhlmann & Hibiya 2007), then I−

v 	 I+
v

(table 1). Thus more than two thirds of the kinetic energy of the perturbation is
produced in a region that would be subject to a centrifugal-type instability if the flow
were inviscid. The mechanism of self-induced vortex straining due to the curvature of
the vortex core that destabilizes, e.g. ring vortices (Widnall & Tsai 1977) seems to be
of minor importance here, since the corresponding local peak of energy production
near the centre of the vortex is relatively weak (figure 7).

We conclude that the low-Prandtl-number flow is unstable to a centrifugal
instability. The critical mode and the region near the separation point where the
kinetic energy production is peaked is very similar to the stationary centrifugal
instability in deep lid-driven cavities (see figure 20 of Albensoeder et al. 2001).

4.1.4. Moderately high-Prandtl-number instability mechanism

For Pr = 4 the basic flow becomes unstable for m =2 at Rec = 1.10 × 105 with
ωc = 54.54. The perturbation temperature on the free surface z = 0.5 is shown
in figure 8(a). Since the perturbation flow is directed from the hot to the cold
perturbation-temperature spots, thermocapillary forces drive the perturbation flow.
In fact, all other driving forces are insignificant. The kinetic energy production by
inertia effects is vanishingly small compared to the Marangoni production (Iv 
 M ,
table 1).

For moderate and high Prandtl numbers, convection dominates over diffusion.
Therefore, the surface spots could possibly be created by the vertical component of
the perturbation flow which must arise due to continuity, similar as in the classical
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(a) (b)

Figure 9. (a) Perturbation flow (arrows), perturbation temperature θ (colour) and local
thermal production iT (lines) in a vertical plane at an azimuthal angle for which the temperature
perturbation takes its absolute maximum (solid line in figure 8b). (b) Perturbation flow (arrows),
local thermal production (lines) and basic temperature field θ0 (colour) in a vertical cut at an
azimuthal angle for which the local thermal energy production takes its absolute maximum
(dashed line in figure 8b). The colour scale from blue to red indicates temperatures from cold
to hot, respectively. Parameters as in figure 8.

Marangoni problem (Pearson 1958). However, the Pearson mechanism cannot be at
work here, because the vertical temperature gradient has the wrong sign: the free
surface is hotter than the fluid below it (cf. figure 4b). The remaining possibilities are
heat conduction and heat convection by the basic flow u0 · ∇θ from much stronger
temperature extrema in the bulk. The latter process is more important for moderate
Prandtl numbers and it is energy preserving in the integral sense. As figures 8(b)
and 9(a) illustrate such bulk extrema do exist. They are created by thermal production
caused by the thermocapillary-driven perturbation flow across the basic temperature
isotherms. The perturbation temperature is then convected by the basic velocity field
and finally reaches the free surface by conduction. The extrema of the local thermal
production rate iT arise azimuthally slightly ahead of those of the bulk temperature
extrema. This is indicative of the clockwise rotation of the wave and consistent with
the negative phase velocity which, for m > 0 and together with (2.11), is determined
by the positive critical angular frequency ωc = 54.54 > 0 for the case presented. The
different azimuthal angles are indicated by the full and dashed lines in figure 8(b).
The respective vertical cuts are shown in figure 9(a, b).

The mechanisms discussed is identical with the one for hydrothermal waves in plane
thermocapillary layers (Smith & Davis 1983) or in thermocapillary liquid bridges
(Wanschura et al. 1995). We thus conclude that the moderately high-Prandtl-number
instability in thermocapillary pools is due to hydrothermal waves.

4.1.5. Prandtl number dependence of the kinetic energy budget

The kinetic energy budget for Γ = 1 and Gr =0 at criticality is shown in figure 10 as
a function of Pr . In the low-Prandtl-number range the instability mechanism is inertial
(centrifugal) throughout, since Iv (I−

v ) dominates. As Pr ↑ 1 the basic temperature
field is convectively compressed towards the cold wall and the thermocapillary stresses
become less effective in driving the basic vortex. As a result the basic flow is stabilized,
similar as in liquid bridges (Wanschura et al. 1995). For intermediate Prandtl numbers
the stabilization is partially compensated by cooperating Marangoni forces which are
most significant for the m =2 mode at Pr ≈ 0.2 (figure 10).

In the moderately high-Prandtl-number range the Marangoni production M

increases with Prandtl number. While there is a sizable amount of kinetic energy
produced by inertial processes (Iv) for Pr ≈ 2, their contribution decreases rapidly for
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Figure 10. Budget of the kinetic energy (2.13) as function Pr for Γ = 1 and Gr = 0. The
critical wavenumber is indicated at the top of the figure. The curves represent Iv (full line), I−
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line).

higher Prandtl numbers and may even act slightly stabilizing for Γ = 1 and Pr = 10.
The thermal energy budget (2.17) is not of much interest, because it always represents
an exact balance between thermal energy production and thermal diffusion. Similar
as in liquid bridges the basic flow is stabilized for Pr ↓ 1 due to the increase of
thermal diffusion DT compared to the convective transport of θ0 and θ .

4.2. Aspect ratio dependence of the instability

4.2.1. Asymptotically small Prandtl numbers

In the limit of small Prandtl numbers Pr → 0 the temperature field is exactly
conducting and the dynamics is purely inertial. The conducting basic temperature field
merely serves to drive the basic flow. For practical reasons we studied the behaviour
for Pr = 10−10. This value is an excellent approximation of the zero-Prandtl-number
limit if the Marangoni–Péclet number Ma = Re P r 
 1, i.e. if Re 
 1010. For the
computed critical Reynolds numbers this condition is always satisfied and we find
Nu = 1.00. Moreover, Re even overestimates the Reynolds number based on the actual
flow velocities Re∗ owing to the selected temperature scale (see § 3).

The dependence on the aspect ratio of the basic flow at at criticality is displayed
in figure 11. The diameter of the toroidal vortex scales with the smallest geometrical
length scale available. For deep cavities Γ 
 1 the diameter of the vortex in the
(r, z) plane scales with the radius R. Hence, the flow does not significantly penetrate
in axial direction. In the limit Γ → 0 the toroidal vortex will drive a sequence of
weak counter-rotating vortices stacked axially and decaying exponentially from the
free surface (for rectangular thermocapillary cavities see Rybicki & Floryan 1987).
For aspect ratios of order one and larger the vortex size scales with the depth. If Γ

is large and the Reynolds number high a thin surface layer of fluid is accelerated
towards the cold rim of the pool. On the cold wall the jet is deflected downwards
forming a toroidal vortex. Where the upward return flow of the vortex impinges
on the free surface and collides with the radial outward jet the excess fluid returns
radially inwards. As a result, the flow at intermediate radial distances is nearly
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(a) (b) (c) (d)

(e) (f)

(h) (i)
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Figure 11. Basic-state stream function at criticality for Pr = 10−10 and Gr = 0. The critical
data (Γ,mc, Rec) are (a): (0.5, 3, 1.15 × 105), (b): (1, 3, 2.91 × 104), (c): (1.5, 3, 2.02 × 104),
(d ): (2, 7, 3.34 × 104), (e): (2.5, 7, 3.54 × 104), (f ): (3, 7, 6.70 × 104), (g): (4, 3, 1.21 × 105), (h):
(5.1, 5, 1.43 × 105) and (i ): (6.1, 7, 1.70 × 105).

radial. Contrary to the low-Prandtl-number thermocapillary-driven flow in shallow
rectangular domains (Ben Hadid & Roux 1990; Laure, Roux & Ben Hadid 1990),
we did not find a horizontal sequence of co-rotating vortices decaying from the cold
wall. This is most likely due to the type of heating by a free-surface heat flux and the
cylindrical geometry.

Neutral curves and frequencies as function of Γ are shown in figure 12. In the
range Γ � 3.5 neutral curves of several other modes (not shown) with different
wavenumbers lie fairly close to, but above, the critical curves shown. Three ranges
can be distinguished. For small aspect ratios Γ � 1.91 we find a stationary critical
mode with a wavenumber m =3. This is the same mode as for Γ = 1 which was
discussed is § 4.1.3 and which is destabilized by centrifugal effects. In the limit Γ → 0,
the depth d of the pool becomes irrelevant and the characteristic length scale is R.
Since the length scale linearly enters �T ∼ d as well as Re explicitly, the Reynolds
number scales like Re ∼ d2. Hence we expect the asymptotic behaviour RecΓ

2 = a as
Γ → 0. In fact, this scaling is found with a =2.8 × 104 (dash-dotted line in figure 12).

In the intermediate aspect-ratio range 1.91 � Γ � 3.31 a qualitatively different type
of instability arises. The critical wavenumber m =7 is rather large and the normal
mode is oscillatory. We consider the case Γ = 2 in more detail. The critical Reynolds
number is Rec = 3.34 × 104 with ωc = 157. With Pr = 10−10 the critical Marangoni
number Mac = Pr Rec = 3.34 × 10−6 is very small and the perturbation temperature
field is irrelevant. Hence, the perturbation flow is entirely driven by inertial forces.
This is confirmed by the kinetic energy budget (table 1). Evaluation of the Rayleigh
criterion (4.1) yields the grey-shaded areas shown in figure 13(a). It is seen that one
region in which (4.1) holds is aligned with the outer streamlines of the basic vortex,
similar as in figure 7. The local kinetic energy production iv is significantly peaked
in that region and near the point of basic flow separation from the sidewall. Since
most of the kinetic energy is produced in this region, we conclude that the instability
is centrifugal in nature. Owing to the localization of the energy source the critical
mode is confined to the region of the basic vortex and the perturbation flow is very
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Figure 12. Critical Reynolds number as function of the aspect ratio for Pr = 10−10 and Gr = 0.
Numbers indicate the critical wavenumber m. The branches are stationary (full line, dotted
lines) or oscillatory (dashed line). The upper dashed line represents the neutral frequency and
the dash-dotted line is the asymptote Rec = 2.8 × 104/Γ 2 for Γ → 0.

(a)

(b)

Figure 13. Vertical cross-section at an angle for which iv takes its absolute maximum. The
parameters are Pr = 10−10, Γ = 2, Gr = 0, m= 7 and Rec = 3.34 × 104. (a) Regions (grey) in
which the local Rayleigh criterion Φ(r) < 0 holds. In addition, isolines of the basic-state stream
function ψ0 (left side) and isolines of iv (right side) are shown. (b) Perturbation flow (arrows),
iv (colour) and ψ0 (lines).

weak in the near-axis region of the pool (figure 13b). Figure 14 shows the critical
flow field at four different horizontal layers. The Görtler-like vortices are best visible
at z = 0.25 (figure 14b). While the kinetic energy production and the perturbation
flow in the (r, z) plane is similar to the stationary small-aspect-ratio mode and the
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(a) (b)

(c) (d)

Figure 14. Critical flow for Γ = 2, Pr = 10−10 and Gr = 0 at Rec = 3.34 × 104 with ωc = 157
and m= 7. Shown are horizontal planes at the free surface z = 0.5 (a), z = 0.25 (b), z = 0
(c) and z = −0.25 (d ). The pattern rotates clockwise.

stationary mode in deep lid-driven cavities of Albensoeder et al. (2001), the present
large-aspect-ratio mode is travelling azimuthally.

For even higher aspect ratios Γ � 3.31 yet another type of instability is found.
The critical perturbation is once again stationary and the critical wavenumber
increases with the aspect ratio in regular steps of one. As a representative case
for the high-aspect-ratio range we consider Γ = 4.5. The critical Reynolds number is
Rec = 1.28 × 105 with m = 4. The critical mode at the free surface is shown in figure 15.
Apart from a small zone near r = 0 and the rim r = Γ the perturbation flow is nearly
perfectly aligned in radial direction, not only on the free surface but also in the
bulk. It is directed inwards in the regions of the (extremely weak) cold surface spots
and outwards in the hot-spot regions (the perturbation temperature is not shown).
The weak azimuthal surface flow near the rim is directed from the hot to the cold
sectors.
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Figure 15. Critical flow with m= 4 (arrows) and basic temperature field (colour) on the free
surface z = 0.5 at Rec =1.28 × 105 for Γ = 4.5, Pr = 10−10 and Gr =0.

Figure 16. Vertical cut along the axis of the cylinder showing the perturbation flow (arrows),
the total local production iv (colour) and the basic stream function ψ0 (lines). The cut is shown
at an azimuthal angle at which iv takes its absolute maximum. The parameters are Pr = 10−10,
Γ = 4.5, Gr =0, m= 4 and Rec = 1.28 × 105.

Figure 17. Close-up of figure 16 showing −u2∂ru0/D (colour) instead of
iv = −u · (u · ∇u0)/D.

The kinetic energy budget (table 1) shows that the instability is purely inertial.
The main contribution to the kinetic energy production arises near the cylinder’s
axis in the upper half of the pool (figure 16). The figure shows the total local
production iv = −u · (u · ∇u0)/D. The dominant contribution to the total production,
however, is due to the term −u2∂ru0/D which represents the local transfer rate of
kinetic energy between the radial momentum of the basic flow u0 and the radial
velocity u of the perturbation flow. The latter production term is shown close-up
in figure 17. It is nearly indistinguishable from iv as in figure 16. To explain this
production peak we note that the radial component u0 of the basic flow has a local
minimum (inward flow) at about (r, z) = (0.65 Γ, 0.31). From this location the radial
inward flow (u0 < 0) increases monotonically to zero at r = 0. The basic radial inward
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(a) (b)

Figure 18. Basic-state stream function at criticality for Pr = 0.03 and Gr = 0. (a) Γ = 2,
Rec = 2.84 × 104, m= 3. (b) Γ = 6.1, Rec = 4.51 × 104, m= 6.

flow is thus decelerated as the axis is approached. This deceleration despite of the
cylindrical geometry is made possible by a strong entrainment of the inward flow by
the rapid radial outward flow which arises in a very thin surface layer visible from the
streamlines shown in figure 17. Since the kinetic energy production peak is located
in the region of radial inward flow deceleration (u0 < 0, cf. figure 17), we conclude
that the instability is caused by the strong deceleration (∂ru0 < 0) of the basic radial
inward flow. All other production terms are much smaller. The instability thus is a
property of the converging and decelerating near-axis subsurface flow which is made
possible by the entrainment effect provided by the radial outward thermocapillary
surface flow.

The instability at Γ = 4.5 shares some similarities with the flow observed in shallow
pools driven by a point source of solute which locally reduces the surface tension.
Such an experiment was first described by Thomson (1855). As reported by Shtern
& Hussain (1993) similar experiments were conducted by Pshenichnikov & Yatsenko
(1974). Small amounts of alcohol have been fed to the centre of the surface of water
filled in a shallow dish. Driven by solutal gradients the axisymmetric flow was found
to be unstable to azimuthal perturbations consisting of alternating radial inward and
outward jets observable on the free surface of the liquid, very much like the pattern in
figure 15. To better understand the instability one might consider the simplification of
plane flow as in, e.g. Goldshtik, Hussain & Shtern (1991). Energy transfer from a basic
source/sink flow u0 = u0(r)er based on the diverging nature, i.e. the dependence on ϕ

of the direction of the flow, would be −u · [u · (r−1eϕ∂ϕ)u0] = −r−1v2u0, which requires
an azimuthal perturbations flow v. But this is not the case for the instability of plane
source/sink flow nor for the present case. The energy-transfer mechanism in plane
source/sink flow as well as in the present case relies on the deceleration/acceleration
of the basic radial flow via the production rate −u2∂ru0. Production is positive only
for ∂ru0 < 0, i.e. for flow deceleration. This is realized in plane diverging source flow
u0 ∼ r−1 of an incompressible fluid. The same mechanism is operative in shallow
thermocapillary pools of asymptotically small Prandtl number and we conclude that
the instability is of the same nature as the one of a plane source flow.

4.2.2. Pr= 0.03

The low-Prandtl-number instability for Γ =1 and its dependence on the Prandtl
number has been discussed in § 4.1, focusing on Pr = 0.03. Here we consider the
dependence on the aspect ratio for Pr = 0.03. As can be seen from figure 18 the
basic-state streamlines are similar to those for Pr = 10−10. However, as the aspect
ratio increases beyond Γ � 2 Marangoni effect become significant in the instability
mechanism. This effect is due to the increase of the Prandtl number from 10−10 to
0.03. As a result the flow is significantly destabilized as compared to Pr =10−10.
This is seen from the neutral curves shown in figure 19 as compared to figure 12.
Apparently, both the oscillatory mode and the high-aspect-ratio stationary modes
(Rec � 1.2 × 105) are superseded for Pr = 0.03 by stationary modes (Rec � 0.4 × 105)
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which have a structure similar to the small-aspect-ratio mode for Pr =10−10. As
argued before, the critical Reynolds number should scale like Rec = a/Γ 2 for Γ → 0.
We find a = 3.9 × 104 (dotted line in figure 19).

The importance of the Marangoni production large aspect ratios Γ can be seen from
figure 20. Yet, the major energy production remains due to centrifugal effects, similar
as for Γ = 1 (figure 7). This conclusion is based on the dominating contribution
of I−

v to the total integral production I ≈ I−
v for Γ � 2 (figure 20). The significance

of Marangoni forces is reflected by the velocity and temperature perturbation fields
on the free surface shown in figure 21. For large Γ (figure 21d,e,f ) the surface flow
is mainly azimuthal and augmented by the thermocapillary effect induced by the
sectorial perturbation temperature field. For decreasing Γ (figure 21a,b,c) additional
temperature extrema arise near the rim of the pool, grow larger as Γ is decreased and
even become dominant. The azimuthal thermocapillary effect due to the peripheral
temperature spots is counteracting the azimuthal surface flow which reflects the
dominance of inertial production as Γ → 0.
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(a) Γ = 0.5, m = 3 (b) Γ = 2, m = 3 (c) Γ = 3, m = 4

(d) Γ = 4, m = 4 (e) Γ = 5.1, m = 5 (f) Γ = 6.1, m = 6

Figure 21. Critical perturbation flow (arrows) and temperature (lines) on the free surface
z = 0.5 for Pr = 0.03 and Gr = 0. Negative temperatures are indicated by dotted lines.
The critical Reynolds numbers and Nusselt numbers (Rec,Nu) are (a) (1.55 × 105, 0.965),
(b) (2.84 × 104, 0.965), (c) (3.45 × 104, 0.963), (d ) (3.51 × 104, 0.946), (e) (3.90 × 104, 0.932),
(f ) (4.51 × 104, 0.924).

(a) (b) (c)

Figure 22. Basic-state stream function ψ0 (upper row) and temperature field θ0 (lower
row) at criticality for Prandtl number Pr =4 and Gr =0. The parameters are (a) Γ = 0.5
Rec = 4.72 × 105, m= 2, Nu = 5.02; (b) Γ = 3, Rec = 5.99 × 104, m= 4, Nu =4.56; (c) Γ = 6.1,
Rec = 1.29 × 105, m= 6, Nu = 4.01.

4.2.3. Pr= 4

Basic flow and temperature fields at the critical point for Pr = 4 are provided in
figure 22. Since the convective effect is much stronger for moderate Prandtl numbers
as compared to smaller ones, the basic velocity fields at criticality are much weaker.
Hence, the nearly fly-wheel inertial vortices (like figure 11i ) cannot be found.
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Neutral curves for Pr = 4 as functions of Γ are shown in figure 23(a). The critical
modes are oscillatory for all wavenumbers m. The critical Reynolds number scales
like Rec = 1.1 × 105/Γ 2 as Γ → 0. A scaling ∼ Γ −2 is also found for the oscillation
frequency ωc which is displayed in figure 23(b). The frequency does not suffer major
jumps at the codimension-two points, i.e. the frequency is not determined by m.
Obviously it is determined by the basic flow, more precisely by a suitably defined
eddy-turn-over time (see e.g. Leypoldt, Kuhlmann & Rath 2000).

The aspect ratio dependence of the kinetic energy balance (2.13) is displayed in
figure 24. As discussed in § 4.1 the instability is mainly caused by the hydrothermal-
wave mechanism. For all aspect ratios Marangoni forces are dominant in driving
the perturbation flow. As Γ increases, and with it the critical wavenumber, inertial
processes become increasingly effective in feeding kinetic energy to the perturbation
flow. The relative importance of inertial to Marangoni production remains almost
constant for a given wavenumber. If the tendency is extrapolated the instability might
possibly be dominated by inertial production for sufficiently high aspect ratios.
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Pr = 10−10 Pr = 10

Figure Gr Rec Bd m Figure Gr Rec Bd m Nu

25a 2.90 × 103 2.90 × 104 0.1 3 26a 5.69 × 103 5.69 × 104 0.1 2 5.27
25b 2.84 × 104 2.84 × 104 1 3 26b 5.97 × 104 5.97 × 104 1 2 5.39
25c 1.76 × 105 2.79 × 104 6.31 3 26c 5.53 × 105 8.76 × 104 6.31 2 5.74
25d 1.19 × 106 1.51 × 103 794 2 26d 3.53 × 106 2.81 × 105 12.6 1 7.25

Table 2. Parameters for figures 25 and 26. The dynamic Bond number is defined as
Bd = Gr/Re. Data have been rounded to three significant decimals. For Pr = 10−10 always
Nu = 1.00.

(a) (b) (c) (d)

Figure 25. Basic-state stream function at criticality for Pr = 10−10, Γ = 1 and increasing
buoyancy (from (a) to (d)). The parameters are given in table 2.

(a) (b) (c) (d)

Figure 26. Basic-state stream function and temperature fields at criticality for Pr = 10, Γ = 1
and increasing buoyancy (from (a) to (d)). The parameters are given in table 2.

4.3. The influence of buoyancy

To discuss the effect of buoyancy we consider a liquid pool with Γ = 1 for
asymptotically small and a high Prandtl number, i.e. for Pr =10−10 and Pr = 10,
respectively.

Figure 25 (the parameters are given in table 2) shows a sequence of stream-function
isolines for increasing Bond number Bd = Gr/Re. Buoyancy forces are directed
downwards in the vicinity of the cold sidewall. They cause an increase in size of
the primary clockwise rotating vortex. The separation from the cold sidewall is
delayed and even completely suppressed for sufficiently high Bd . For Pr = 10−10 the
temperature field is almost conducting as in figure 4(a) for Gr = 0.

For Pr = 10 (figure 26) the effect of buoyancy is more intricate. Increasing buoyancy
promotes the formation of thermal stratification. Hot surface fluid is convected
downwards near the cold sidewall, but cannot penetrate deep into the pool owing
to upward buoyancy. The radial inward return flow continues to rise towards the



532 H. C. Kuhlmann and U. Schoisswohl

Gr/106

0 0.2 0.4 0.6 0.8 1.0 1.2

1

2

3

4

5

6

m = 2

m = 3

R
e n

/1
0

4

Figure 27. Grashof number dependence of the neutral Reynolds number Ren

for Γ =1 and Pr =10−10.

2

4

6

m = 2

m = 1

0.5

1.0

1.5

2.0

m = 2

m = 1

Gr/106

0 2 4 6 8 10

Gr/106

0 2 4 6 8 10

R
e n

/1
0

5

ω
n/

1
0

2

(a) (b)

Figure 28. Grashof number dependence of the neutral Reynolds number Ren

(a) and frequency ωn (b) for Γ =1 and Pr = 10.

free surface. This leads to a flattening of the vortex resulting in a rounded triangular
shape of the stream lines. Within the nearly stagnant lower part of the pool a weak
counter-rotating ring vortex can arise as the remains of the larger separation zone in
the lower half of the pool (figure 26d ), reminiscent of vortex breakdown in swirling
flows.

Figure 27 shows the dependence of the neutral Reynolds numbers on the Grashof
number for Pr = 10−10 for the most dangerous modes. The critical parameters for
Pr = 10 are displayed in figure 28. The corresponding kinetic energy balances are
shown in figure 29. Apart from a small range of Grashof numbers within which the
most dangerous mode has m =3 the flow for Pr = 10−10 is destabilized by an m = 2
mode for Gr � 2.2 × 105. Both thermocapillary and buoyancy forces drive the basic
flow. They are, however, not important for the instability mechanism. As seen from
figure 29(a) Marangoni production M is negligible for the kinetic energy budget within
the full range of parameters. Buoyant production is even smaller (|IGr | < 10−10). In the
limit Re → 0 the purely buoyancy-drives vortex becomes unstable at Gr ≈ 1.25 × 106

due to inertia. Figure 29(a) shows that no clear dominance of I−
v nor I+

v can be
found. The instability inertial mechanism depends on the details of the interaction
between basic flow and critical mode.

For Pr = 10 the basic flow is stabilized. The critical mode changes from m = 2
to m = 1 as Gr is increased. Obviously, the stabilization is due to the increasing
thermal stratification of the basic flow (figure 26). The kinetic energy is primarily
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produced by Marangoni production M , assisted by modest buoyancy production
(figure 29b). These features, together with the oscillatory character of the critical
mode are indicative of a hydrothermal wave. The increase of the critical threshold
is associated with a structural change of the basic temperature field such that the
critical mode becomes less efficient in extracting thermal energy from the basic state.
Hence, higher Reynolds numbers are required to render the basic state unstable.

5. Summary
The basic thermocapillary flow in cylindrical liquid pools driven by an axisymmetric

free-surface heat flux with a parabolic profile is characterized by a single vortex ring
close to the cold corner made by the free surface and the outer wall. Different
mechanisms can make the flow unstable to three-dimensional perturbations.

For Gr = 0 and moderately small Prandtl numbers centrifugal effects act
destabilizing, similar as in the lid-driven cavity problem (Albensoeder et al. 2001) or
in low-Prandtl-number thermocapillary liquid bridges (Nienhüser & Kuhlmann 2002).
For moderately high Prandtl numbers, hydrothermal waves arise which gain thermal
energy from internal basic-state temperature gradients (Smith & Davis 1983). Again,
the same mechanism has been found in thermocapillary liquid bridges by Wanschura
et al. (1995). Two other instabilities have been found for asymptotically small Prandtl
numbers. These are the oscillatory centrifugal instability for intermediate aspect ratios
(1.92 � Γ � 3.31) and a stationary instability for Γ � 3.31. The latter instability is
driven by a strong deceleration of the subsurface return flow as it approaches the axis.
Buoyancy stabilizes the moderately high-Prandtl-number hydrothermal waves when
gravity acts downwards (Gr > 0), whereas, for asymptotically small Prandtl number,
buoyancy acts destabilizing, since it is augmenting the thermocapillary driving. In
the limit for Γ → 0 the basic flow becomes independent of the depth d of the pool.
Hence, the critical Reynolds number Re ∼ d2 must asymptotically scale like ∼ Γ −2,
since the radius R is the only relevant length scale. This behaviour was confirmed
and quantified.
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An open problem is the relation of the instability mechanism for shallow pools of
very low-Prandtl-number fluids to the instability in solutocapillary pools (Thomson
1855; Pshenichnikov & Yatsenko 1974). To validate the hypothesis that the instability
in solutocapillary pools is triggered in the converging subsurface flow further detailed
analyses are required. One indication in support of this interpretation is the fact that
the inertial production has a tendency to become more important for a fixed high
Prandtl (Schmidt) number as the aspect ratio increases (figure 24). In addition to this
issue and important for applications, it would be very interesting to study the effects
of the heat flux profile, the pool geometry, motion in the gas phase, or the role of
surfactants which can strongly influence the surface tension.

We gratefully acknowledge computing time provided by the Zentraler Informatik
Dienst (ZID) of Vienna University of Technology.
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